Dynatomic polynomials associated with distinguished polynomials.

(A survey)
Djeidi SYLLA
Abstract. Let K be field and $h \in K[z]$ be a monic polynomial for any integer $\nu \geq 1$, the ν-th dynatomic polynomial of h is defined to be
$\Phi_{\nu, h}=\prod_{d \mid \nu}\left(h^{\circ d}(z)-z\right)^{\mu\left(\frac{\nu}{d}\right)}$. The properties of dynatomic polynomials have been extensively studied by Morton and Patel.
For $h(z)$ written in the form $h(z)=z+g(z)$, the polynomials $g_{\nu}(z)=h^{\circ \nu}(z)-z$ are in consderation. Now let L be a complete valued field of residue characteristic $p \neq 0$ and assume that the monic polynomial g has its cœefficients in the valuation ring of L and is distinguished.
Then, denoting by \bar{L} the residue field of L, for any integer $\nu \geq 1$, we obtain by reduction in \bar{L} an additive polynomial $\overline{g_{\nu}}$ independent from g and if ν is a prime number, we obtain a nice formula for the reduction of $\Phi_{\nu, h}$. We consider the particular case of distinguished polynomials of the form $g(z)=a_{0}+z^{p}$, that is $\left|a_{0}\right|<1$. We then study for L equal the field p-adic numbers the 3 dynatomic polynomial $\Phi_{3, h}$ of $h(z)=a_{0}+z+z^{p}$ and its roots, when $p=2$, 3,5 and 7 .
The Schönemann irreductibility criterion, the Berlekamp algorithm and the Krasner's Lemma are the tools that we use for this work.

